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In a reversed direction of computer tomography, the Fourier diffraction theorem is used to 
treat a forward problem in underwater acoustics, that is, prediction of far-field sound scatter-
ing from a known object insonified by a plane wave. The cross-sectional distribution of 
acoustic properties of the scattering target and the surrounding medium is viewed as an image, 
which is transformed into the frequency domain using 2D FFT. A pair of half-circular arcs in 
the frequency domain can be specified from the frequency and propagation direction of the 
incident sound wave. Spectral coefficients of the target image taken from these half-circles 
are used to calculate the field projections via 1D FFT. Aimed at solving the scattering prob-
lem in monostatic settings, this work is focused on the prediction of backscattered sound field. 
The method is very efficient in computation since, unlike other numerical approaches such as 
the finite element method (FEM) and the finite-difference time-domain method (FDTD), it-
erations over the entire computation domain is not needed, and the otherwise highly demand-
ing computation is done with a single 2D FFT operation. Numerical results are provided and 
compared with FDTD, showing promising prospects of the method. 

1. Introduction 
A forward problem is to predict the response to a stimulus from the known properties of a 

system. In underwater acoustics, calculation of the sound pressure distribution, target strength, di-
rectional pattern, etc., given the properties of a scattering object insonified by a known incident 
wave, is a typical forward problem. It can be solved by various means including analytical, asymp-
totic, and numerical approaches. Since rigorous analytical solutions are rarely possible for practical 
problems, numerical methods are popular due to their wide applicability and great flexibility. In-
stead of the frequently used finite element method/boundary element method (FEM/BEM)1 and the 
finite-difference time-domain method (FDTD)2,3, we propose a novel technique to predict scattering 
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from a target based on the application of the Fourier diffraction theorem in a different perspective 
from its conventional use in solving inverse problems, typically, diffraction tomography. 

Diffraction tomography is a variation of computer tomography (CT) for medical diagnoses4. 
CT reconstructs the cross-sectional image of an object from a set of projections generated by X-ray 
scans. The inventor of the first X-ray CT scanner, Godfrey Hounsfield, and Allan Cormack who 
independently laid the theoretical foundation of the technique early in the 1960s, jointly received 
the Nobel Prize in 1979 for their contribution that has profound significance in clinical medicine. 

In computer tomography, projection data are related to the 2D Fourier transform of the cross-
sectional distribution of the object through the Fourier slice theorem. When acoustic or electromag-
netic waves are used, the Fourier diffraction theorem must be used instead since, unlike X-rays, the 
wavelengths are comparable to the object dimension so that diffraction must be taken into account, 
hence the term diffraction CT5. Both forward and backward projections can be used in the recon-
struction, referred to as transmission mode diffraction tomography (TMDT) and reflection mode 
diffraction tomography (RMDT), respectively6,7. 

By using the Fourier diffraction theorem in a reversed fashion in contrast to diffraction CT, 
the method we propose in this paper offers a major advantage in computational efficiency over 
FEM/BEM and FDTD that involve tremendous iterations on a 2D or 3D grid, and are difficult, if 
not impossible, to be used in high frequency and/or large object applications. We will briefly intro-
duce the Fourier diffraction theorem, show how it can be used to efficiently calculate the scattered 
sound given parameters of the incident wave and the scattering object, and make comparison with 
the FDTD results. 

2. Fourier Diffraction Theorem 
The diffraction CT is to reconstruct the cross-sectional distribution of an object from informa-

tion carried by the scattered field that satisfies the Helmhotz equation8: 

  (1) 2 2 2
0 0( ) ( ) ( )[ ( ) ( )]s ik u k o u ur r r∇ + = − + s r

where ui(r) and us(r) are pressures of the incident and scattered fields, k0 is the wave number, and 
o(r) a function representing the object’s geometry and acoustic properties. Eq. (1) has the following 
solution: 

 ( ) ( ') ( ') ( ') ',s i su g o u d ur r r r r r= − <<∫ iu  (2) 

where g(r−r') is the Green’s function. Born or Rytov approximation is used based on an assumption 
of weak scattering4,9

. The Fourier diffraction theorem can be derived by taking Fourier transform of 
both sides of Eq. (2).  

Assuming the incident plane wave is propagated towards the positive x-axis, the one dimen-
sional Fourier transform of the forward/backward projection taken on a line parallel to the y-axis 
and crossing the x-axis at x = l0 is  
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where α = 1 and α = −1 correspond to forward and backward projections respectively. One can see 
from Eq. (3) that, for the forward projection, Us is a sequence of samples located on a half-circle in 
the 2D Fourier domain with a radius k0, centerd at kx = −k0 and ky = 0, and tangent to the vertical 
axis at the origin. For the backward projection, the samples are located on the complement of the 
above half-circle, which passes through the horizontal axis at kx = −2k0. 

The theorem can be explained in a diagrammatic manner as illustrated in Fig. 1. A vector of 
forward projection, pF, is obtained by measuring the scattered sound along the line T1T1' when the 
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object is insonified by a plane wave of angular frequency ω0, propagating in the direction measured 
by an angle ϕ. The one dimensional DFT of pF gives samples on a half-circle in the object’s two 
dimensional DFT, depicted as the thick curve (low frequency half-circle) in the right part of Fig. 1. 
This is TMDT. Radius of the half-circle equals the spatial frequency of the incident wave, k0 = ω0/c, 
in radians per meter. When k0 approaches infinity, the radius tends to infinity so that the half-circle 
becomes a straight line, and the theorem degenerates to the Fourier slice theorem for the X-ray CT. 
In the case of RMDT, the backward projection pB taken along T2T2' corresponds to the samples on 
the high frequency half-circle depicted as the thick dotted curve in Fig. 1. If ordinary frequency is 
used instead of angular frequency as in the numerical computation described in the following, the 
spatial frequency axes in Fig. 1 should be changed to 1/λx and 1/λy and the radius of the half-circles 
becomes 1/λ0. 
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Figure 1. Schematic diagram explaining the Fourier diffraction theorem 

3. Prediction of Scattered Sound 
Our purpose is to apply the Fourier diffraction theorem in a reversed fashion with respect to 

the diffraction CT, in other words, to calculate scattered sound from the geometric and acoustic 
parameters of an object insonified by a plane wave. We will mainly focused on backscattering in 
the present work. To confine the discussion to a 2D problem, assume that a cylindrical object is 
immersed in water with the incident direction perpendicular to its axis. Consider a cross-section of 
the cylinder and the surrounding water:   

 ( ) ( ) ( )o cρr r r=   (4) 

where ρ(r) is the density and c(r) the sound velocity, both functions of the spatial coordinates r. 
Consider a rectangular region that encloses the object and the surrounding water. Discretize the 
function o(r) in the rectangular region by sampling it on a square grid, with an inter-sample spacing 
δ = λ0/L where λ0  is the wavelength and L a positive integer, and then quantize the ρc values to B 
bits. Thus we obtain a digital image o, and its DFT, O, containing information of the object. 
Fig. 2(a) shows the discretized cross-section of an elliptical cylinder made of steel and surrounded 
by sea water, and Fig. 2(b) the magnitude of its DFT in a form of digital image, scaled and quan-
tized to fit the range of display, usually [0, 255]. We know that the Fourier transform of an ellipse is 
also elliptic in shape. Irregularity in the high frequency region is a result of the zigzagging edge of 

3 



17th International Congress on Sound and Vibration (ICSV17), Cairo, Egypt, 18-22 July 2010 
 

 

the sampled object due to finite discretization steps. Sampling and quantization will introduce some 
numerical errors as will be observed below. 

We let the incident plane wave propagate along the positive x axis, thus ϕ = 0. According to 
the Fourier diffraction theorem, the frequency domain samples on the solid and dotted half-circles 
in Fig. 2(b) correspond to the forward and backward projection, respectively, in the space domain. 
Parameters of the incident wave, the scattering object and the surrounding medium, and the size of 
the rectangle and the sampling grid are listed in Table 1. In the table, four elliptical cylinders with 
different sizes are listed that are used in the computation, in which (a)-(c) are made of steel and (d) 
made of aluminium.  

Since λ0 = 1 m and L = 8, the sampling interval in the space domain is δ  = λ0/L = 0.125 m. For 
the square area sized 15m×15m in Fig. 2, the total number of samples is N2 = 121 × 121, the fre-
quency domain sampling interval is δ f =1/15 m−1, and therefore the frequency range as plotted in 
Fig. 2(b) is W×W where W = (N −1)δ f = 8 m−1. With the DC component shifted to the center, ranges 
of spatial frequencies both in the horizontal and vertical directions in Fig. 2(b) are [−4, 4] m−1. The 
radius of the half-circles is 1/λ0 = 1 m−1. Samples taken from the solid and dotted half-circles corre-
sponding to the forward and backward projections, respectively, are plotted in Fig. 3. 

     
 (a) Elliptical object (b) Magnitude of DFT 

Figure 2. Cross-sectional image of a steel cylinder and its 2D Fourier transform. Size of the square area is 
15×15m2, and the frequency range is [−4, 4] m−1. The solid and dotted half-circles show locations where the 

Fourier domain samples are taken for calculating the forward and backward projections in the space. 

Table 1. Physical, geometrical, and numerical parameters used in computation with four elliptical cylinders 
among which (a)-(c) are made of steel and (d) made of aluminium corresponding to the plots in Fig. 4 

Values Name  Symbol  Unit  (a) (b) (c) (d) 
Long axis a m 1.7 2.8 2.8 1.7 
Short axis b m 0.9 1.0 1.7 0.3 

Density of object ρo kg/m3 7800 2700 
Sound speed in object co m/s 5653 3672 

Young’s modulus E Newton/m2 19.5×1010 7.1×1010

Poisson’s ratio ν − 0.28 0.33 
Frequency of incident wave f0  Hz 1500 

Density of water ρ   kg/m3 1026 
Sound speed in water c    m/s 1500 

Wavelength  λ0 = c/f0  m 1.0 
Sample number per wavelength n  − 8 

Interval of spatial sampling  δ =λ0/n   m 1/8 
Size of square under consideration Ax × Ay m2 15×15 

Sample number in a projection N=[Ax/δ]+1 − 121 
Interval of frequency sampling δf = 1/Ax m−1 1/15 
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 (a) Samples on the solid arc (b) Samples on the dotted arc 

Figure 3. Two sets of spectral samples taken from the half-circular arcs as shown in Fig. 2(b), normalized 
over each set of the data. 

We now rotate the cylinder about its central axis from 0° to 360° and, and perform 2D Fourier 
transform of the cross-sectional image at every 2°. Each time, we take the Fourier domain samples 
from the half-circle corresponding to the reflection mode diffraction tomography, and calculate the 
backward projection by inverse Fourier transform of the sample sequence. From the projection, we 
obtain the back-scattered sound pressure by averaging the central section of the projection. The 
number of samples in the section used for averaging is 10% of the total to give a trade-off between 
accuracy and smoothness. 

The results are shown by the solid curves in Figs. 4(a)-4(d), with parameters of the scattering 
objects and the incident sound wave given in Table 1. The results are compared with those obtained 
by using FDTD, shown as the dash-dotted curves in the plots. In the FDTD computation, we chose 
a computation domain that is a square region around the scattering object sized A2 = 8 × 8m2, and a 
grid size d = λ0/15 = 0.0667m. Note that the grid spacing must be sufficiently small, generally one 
tenth of the wavelength or less, to ensure an adequate sampling. Thus the total number of grid cells 
in each side of the square was N = round(A/d) + 1 = 121. To obtain the dash-dotted curve in each of 
these plots, the sound pressure distribution within the computation domain was calculated for all the 
orientations of the target, in steps of 1°. In each step, as many as 600 iterations were executed to 
achieve a stable field. The far field back-scattered pressure was then obtained by near-field/far-field 
transformation. A unified FDTD algorithm10 and a least square absorbing boundary condition11 
were used in the computation. 

It can be observed from Fig. 4 that the results obtained using the proposed Fourier diffraction 
theorem approach and those of FDTD are generally in a satisfactory agreement. Discrepancy and 
fluctuations were partly caused by the ruggedness of the coarse sampling of the object and the 
sound field.  

The most important advantage of the proposed method is in the computation efficiency. In the 
FDTD computation carried out for comparison, a total of 600 × 360 = 21,600 iterative operations 
were preformed to get the near-field distributions needed for calculating the scattered sound in the 
far-field for every step of the iteration. In each step, sound pressure and particle velocity on a 
121 × 121 grid were calculated. With an Intel Centrino processor and 2GB memory running Matlab, 
8,000~10,000 seconds were consumed to generate each of the dash-dotted curves in Fig. 4. At high 
frequencies and with a large scattering target, the computation load would be increasing steeply. In 
contrast, by using the Fourier diffraction theorem approach proposed in this work, the projections 
can be obtained without calculating the entire near-field distribution, and the highly efficient fast 
Fourier transform is performed rather than computationally expensive iterations. To obtain one 
curve in Fig. 4, about 22 seconds were used, achieving a time saving of more than two orders of 
magnitude.  

5 



17th International Congress on Sound and Vibration (ICSV17), Cairo, Egypt, 18-22 July 2010 
 

 

0 90 180 270 360
0

0.2

0.4

0.6

0.8

1

Target orientation in degrees

Ba
ck

-s
ca

tte
re

d 
pr

es
su

re

Steel ellipse
Axes: 1.7m, 0.9m

   
0 90 180 270 360

0

0.2

0.4

0.6

0.8

1

Target orientation in degrees

Ba
ck

-s
ca

tte
re

d 
pr

es
su

re

Steel ellipse
Axes: 2.8m, 1m

 
 (a) Steel ellipse with a=1.7m and b=0.9m (b) Steel ellipse with a=2.8.0m and b=1.0m 

0 90 180 270 360
0

0.2

0.4

0.6

0.8

1

Target orientation in degrees

Ba
ck

-s
ca

tte
re

d 
pr

es
su

re

Steel ellipse
Axes: 2.8m, 1.7m

   
0 90 180 270 360

0

0.2

0.4

0.6

0.8

1

Target orientation in degrees

Ba
ck

-s
ca

tte
re

d 
pr

es
su

re

Aluminium ellipse
Axes: 1.7m, 0.3m

 
 (c) Steel ellipse with a=2.8m and b=1.7m (d) Aluminium ellipse with a=1.7m and b=0.3m 

Figure 4. Normalized sound pressure back-scattered by elliptical cylinders made of steel or aluminium, ro-
tating form 0° to 360°, obtained using the proposed Fourier diffraction theorem method (solid) and FDTD 

(dash-dotted) respectively. Parameters of the objects and the incident wave are listed in Table 1. 

4. Conclusions 
We propose to use the Fourier diffraction theorem in a reversed manner with respect to the dif-

fraction tomography to solve a forward problem in acoustics: prediction of the scattered sound field 
from a known incident plane wave and the geometry and physical properties of the scattering object. 
The reversed application of the Fourier diffraction theorem offers a significant advantage in compu-
tation efficiency compared to the popular lattice-based numerical methods, typically FEM/BEM and 
FDTD. The substantial reduction in the computation burden is achieved by avoiding redundant 
computation of the entire distribution in the near-field, and using fast Fourier transform in stead of 
time-consuming iterative operations. Therefore the method is highly efficient and suitable for prac-
tical applications.  

The scattered sound field is a solution of the wave equation. In essence, FDTD solves the wave 
equation by imitating the process of wave propagation in an iterative manner, while the method 
proposed in this work partially solves the wave equation by exploring interaction between the sound 
wave and the scattering object. It is understood that all information of the object and its surrounding 
medium is contained in the two-dimensional Fourier transform of the cross-sectional image, and all 
information of the incident wave, namely, the frequency and the incident angle, is in the radius and 
location of the half-circle for sampling in the spatial transform domain. Taking spectral samples 
from a particular half-circle and performing one-dimensional inverse Fourier transform of these 
samples reveals interaction between the incident sound wave and the scattering object, and therefore 
is equivalent, in part, to solving the wave equation in obtaining the desired solution to the scattering 
problem.  
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Further studies are in order, some of the problems being considered including improvement of 
the numerical accuracy, more complicated, yet practical situations such as non-sinusoidal and non-
plane wave incidence, three-dimensional situations, and bi-static settings.  
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